3.25 \(\int \frac{\sqrt{e \cot (c+d x)}}{a+a \cot (c+d x)} \, dx\)

Optimal. Leaf size=87 \[ \frac{\sqrt{e} \tan ^{-1}\left (\frac{\sqrt{e \cot (c+d x)}}{\sqrt{e}}\right )}{a d}+\frac{\sqrt{e} \tan ^{-1}\left (\frac{\sqrt{e}-\sqrt{e} \cot (c+d x)}{\sqrt{2} \sqrt{e \cot (c+d x)}}\right )}{\sqrt{2} a d} \]

[Out]

(Sqrt[e]*ArcTan[Sqrt[e*Cot[c + d*x]]/Sqrt[e]])/(a*d) + (Sqrt[e]*ArcTan[(Sqrt[e] - Sqrt[e]*Cot[c + d*x])/(Sqrt[
2]*Sqrt[e*Cot[c + d*x]])])/(Sqrt[2]*a*d)

________________________________________________________________________________________

Rubi [A]  time = 0.218134, antiderivative size = 87, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {3572, 3532, 205, 3634, 63} \[ \frac{\sqrt{e} \tan ^{-1}\left (\frac{\sqrt{e \cot (c+d x)}}{\sqrt{e}}\right )}{a d}+\frac{\sqrt{e} \tan ^{-1}\left (\frac{\sqrt{e}-\sqrt{e} \cot (c+d x)}{\sqrt{2} \sqrt{e \cot (c+d x)}}\right )}{\sqrt{2} a d} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[e*Cot[c + d*x]]/(a + a*Cot[c + d*x]),x]

[Out]

(Sqrt[e]*ArcTan[Sqrt[e*Cot[c + d*x]]/Sqrt[e]])/(a*d) + (Sqrt[e]*ArcTan[(Sqrt[e] - Sqrt[e]*Cot[c + d*x])/(Sqrt[
2]*Sqrt[e*Cot[c + d*x]])])/(Sqrt[2]*a*d)

Rule 3572

Int[Sqrt[(a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[1/(
c^2 + d^2), Int[Simp[a*c + b*d + (b*c - a*d)*Tan[e + f*x], x]/Sqrt[a + b*Tan[e + f*x]], x], x] - Dist[(d*(b*c
- a*d))/(c^2 + d^2), Int[(1 + Tan[e + f*x]^2)/(Sqrt[a + b*Tan[e + f*x]]*(c + d*Tan[e + f*x])), x], x] /; FreeQ
[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 3532

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(-2*d^2)/f,
Subst[Int[1/(2*c*d + b*x^2), x], x, (c - d*Tan[e + f*x])/Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x
] && EqQ[c^2 - d^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 3634

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_) + (C_.)*
tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[A/f, Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x]
 /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rubi steps

\begin{align*} \int \frac{\sqrt{e \cot (c+d x)}}{a+a \cot (c+d x)} \, dx &=\frac{\int \frac{a e+a e \cot (c+d x)}{\sqrt{e \cot (c+d x)}} \, dx}{2 a^2}-\frac{1}{2} e \int \frac{1+\cot ^2(c+d x)}{\sqrt{e \cot (c+d x)} (a+a \cot (c+d x))} \, dx\\ &=-\frac{e \operatorname{Subst}\left (\int \frac{1}{\sqrt{-e x} (a-a x)} \, dx,x,-\cot (c+d x)\right )}{2 d}-\frac{e^2 \operatorname{Subst}\left (\int \frac{1}{-2 a^2 e^2-e x^2} \, dx,x,\frac{a e-a e \cot (c+d x)}{\sqrt{e \cot (c+d x)}}\right )}{d}\\ &=\frac{\sqrt{e} \tan ^{-1}\left (\frac{\sqrt{e}-\sqrt{e} \cot (c+d x)}{\sqrt{2} \sqrt{e \cot (c+d x)}}\right )}{\sqrt{2} a d}+\frac{\operatorname{Subst}\left (\int \frac{1}{a+\frac{a x^2}{e}} \, dx,x,\sqrt{e \cot (c+d x)}\right )}{d}\\ &=\frac{\sqrt{e} \tan ^{-1}\left (\frac{\sqrt{e \cot (c+d x)}}{\sqrt{e}}\right )}{a d}+\frac{\sqrt{e} \tan ^{-1}\left (\frac{\sqrt{e}-\sqrt{e} \cot (c+d x)}{\sqrt{2} \sqrt{e \cot (c+d x)}}\right )}{\sqrt{2} a d}\\ \end{align*}

Mathematica [A]  time = 0.241233, size = 98, normalized size = 1.13 \[ \frac{\sqrt{e \cot (c+d x)} \left (\sqrt{2} \tan ^{-1}\left (1-\sqrt{2} \sqrt{\cot (c+d x)}\right )-\sqrt{2} \tan ^{-1}\left (\sqrt{2} \sqrt{\cot (c+d x)}+1\right )+2 \tan ^{-1}\left (\sqrt{\cot (c+d x)}\right )\right )}{2 a d \sqrt{\cot (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[e*Cot[c + d*x]]/(a + a*Cot[c + d*x]),x]

[Out]

((Sqrt[2]*ArcTan[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]] - Sqrt[2]*ArcTan[1 + Sqrt[2]*Sqrt[Cot[c + d*x]]] + 2*ArcTan[S
qrt[Cot[c + d*x]]])*Sqrt[e*Cot[c + d*x]])/(2*a*d*Sqrt[Cot[c + d*x]])

________________________________________________________________________________________

Maple [B]  time = 0.034, size = 358, normalized size = 4.1 \begin{align*} -{\frac{\sqrt{2}}{8\,da}\sqrt [4]{{e}^{2}}\ln \left ({ \left ( e\cot \left ( dx+c \right ) +\sqrt [4]{{e}^{2}}\sqrt{e\cot \left ( dx+c \right ) }\sqrt{2}+\sqrt{{e}^{2}} \right ) \left ( e\cot \left ( dx+c \right ) -\sqrt [4]{{e}^{2}}\sqrt{e\cot \left ( dx+c \right ) }\sqrt{2}+\sqrt{{e}^{2}} \right ) ^{-1}} \right ) }-{\frac{\sqrt{2}}{4\,da}\sqrt [4]{{e}^{2}}\arctan \left ({\sqrt{2}\sqrt{e\cot \left ( dx+c \right ) }{\frac{1}{\sqrt [4]{{e}^{2}}}}}+1 \right ) }+{\frac{\sqrt{2}}{4\,da}\sqrt [4]{{e}^{2}}\arctan \left ( -{\sqrt{2}\sqrt{e\cot \left ( dx+c \right ) }{\frac{1}{\sqrt [4]{{e}^{2}}}}}+1 \right ) }-{\frac{e\sqrt{2}}{8\,da}\ln \left ({ \left ( e\cot \left ( dx+c \right ) -\sqrt [4]{{e}^{2}}\sqrt{e\cot \left ( dx+c \right ) }\sqrt{2}+\sqrt{{e}^{2}} \right ) \left ( e\cot \left ( dx+c \right ) +\sqrt [4]{{e}^{2}}\sqrt{e\cot \left ( dx+c \right ) }\sqrt{2}+\sqrt{{e}^{2}} \right ) ^{-1}} \right ){\frac{1}{\sqrt [4]{{e}^{2}}}}}-{\frac{e\sqrt{2}}{4\,da}\arctan \left ({\sqrt{2}\sqrt{e\cot \left ( dx+c \right ) }{\frac{1}{\sqrt [4]{{e}^{2}}}}}+1 \right ){\frac{1}{\sqrt [4]{{e}^{2}}}}}+{\frac{e\sqrt{2}}{4\,da}\arctan \left ( -{\sqrt{2}\sqrt{e\cot \left ( dx+c \right ) }{\frac{1}{\sqrt [4]{{e}^{2}}}}}+1 \right ){\frac{1}{\sqrt [4]{{e}^{2}}}}}+{\frac{1}{da}\arctan \left ({\sqrt{e\cot \left ( dx+c \right ) }{\frac{1}{\sqrt{e}}}} \right ) \sqrt{e}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*cot(d*x+c))^(1/2)/(a+a*cot(d*x+c)),x)

[Out]

-1/8/d/a*(e^2)^(1/4)*2^(1/2)*ln((e*cot(d*x+c)+(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*cot(d*x
+c)-(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))-1/4/d/a*(e^2)^(1/4)*2^(1/2)*arctan(2^(1/2)/(e^2)^(1
/4)*(e*cot(d*x+c))^(1/2)+1)+1/4/d/a*(e^2)^(1/4)*2^(1/2)*arctan(-2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)-1/
8/d/a*e/(e^2)^(1/4)*2^(1/2)*ln((e*cot(d*x+c)-(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*cot(d*x+
c)+(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))-1/4/d/a*e/(e^2)^(1/4)*2^(1/2)*arctan(2^(1/2)/(e^2)^(
1/4)*(e*cot(d*x+c))^(1/2)+1)+1/4/d/a*e/(e^2)^(1/4)*2^(1/2)*arctan(-2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)
+arctan((e*cot(d*x+c))^(1/2)/e^(1/2))*e^(1/2)/a/d

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cot(d*x+c))^(1/2)/(a+a*cot(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.41288, size = 857, normalized size = 9.85 \begin{align*} \left [\frac{\sqrt{2} \sqrt{-e} \log \left (-{\left (\sqrt{2} \cos \left (2 \, d x + 2 \, c\right ) + \sqrt{2} \sin \left (2 \, d x + 2 \, c\right ) - \sqrt{2}\right )} \sqrt{-e} \sqrt{\frac{e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}} - 2 \, e \sin \left (2 \, d x + 2 \, c\right ) + e\right ) + 2 \, \sqrt{-e} \log \left (\frac{e \cos \left (2 \, d x + 2 \, c\right ) - e \sin \left (2 \, d x + 2 \, c\right ) + 2 \, \sqrt{-e} \sqrt{\frac{e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}} \sin \left (2 \, d x + 2 \, c\right ) + e}{\cos \left (2 \, d x + 2 \, c\right ) + \sin \left (2 \, d x + 2 \, c\right ) + 1}\right )}{4 \, a d}, \frac{\sqrt{2} \sqrt{e} \arctan \left (-\frac{{\left (\sqrt{2} \cos \left (2 \, d x + 2 \, c\right ) - \sqrt{2} \sin \left (2 \, d x + 2 \, c\right ) + \sqrt{2}\right )} \sqrt{e} \sqrt{\frac{e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}}}{2 \,{\left (e \cos \left (2 \, d x + 2 \, c\right ) + e\right )}}\right ) + 2 \, \sqrt{e} \arctan \left (\frac{\sqrt{\frac{e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}}}{\sqrt{e}}\right )}{2 \, a d}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cot(d*x+c))^(1/2)/(a+a*cot(d*x+c)),x, algorithm="fricas")

[Out]

[1/4*(sqrt(2)*sqrt(-e)*log(-(sqrt(2)*cos(2*d*x + 2*c) + sqrt(2)*sin(2*d*x + 2*c) - sqrt(2))*sqrt(-e)*sqrt((e*c
os(2*d*x + 2*c) + e)/sin(2*d*x + 2*c)) - 2*e*sin(2*d*x + 2*c) + e) + 2*sqrt(-e)*log((e*cos(2*d*x + 2*c) - e*si
n(2*d*x + 2*c) + 2*sqrt(-e)*sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d*x + 2*c))*sin(2*d*x + 2*c) + e)/(cos(2*d*x +
 2*c) + sin(2*d*x + 2*c) + 1)))/(a*d), 1/2*(sqrt(2)*sqrt(e)*arctan(-1/2*(sqrt(2)*cos(2*d*x + 2*c) - sqrt(2)*si
n(2*d*x + 2*c) + sqrt(2))*sqrt(e)*sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d*x + 2*c))/(e*cos(2*d*x + 2*c) + e)) +
2*sqrt(e)*arctan(sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d*x + 2*c))/sqrt(e)))/(a*d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{\int \frac{\sqrt{e \cot{\left (c + d x \right )}}}{\cot{\left (c + d x \right )} + 1}\, dx}{a} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cot(d*x+c))**(1/2)/(a+a*cot(d*x+c)),x)

[Out]

Integral(sqrt(e*cot(c + d*x))/(cot(c + d*x) + 1), x)/a

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{e \cot \left (d x + c\right )}}{a \cot \left (d x + c\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cot(d*x+c))^(1/2)/(a+a*cot(d*x+c)),x, algorithm="giac")

[Out]

integrate(sqrt(e*cot(d*x + c))/(a*cot(d*x + c) + a), x)